首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13429篇
  免费   1553篇
  国内免费   2284篇
测绘学   906篇
大气科学   1761篇
地球物理   1472篇
地质学   4612篇
海洋学   1197篇
天文学   5699篇
综合类   604篇
自然地理   1015篇
  2024年   40篇
  2023年   144篇
  2022年   409篇
  2021年   455篇
  2020年   470篇
  2019年   474篇
  2018年   376篇
  2017年   352篇
  2016年   351篇
  2015年   433篇
  2014年   661篇
  2013年   758篇
  2012年   755篇
  2011年   890篇
  2010年   882篇
  2009年   1250篇
  2008年   1155篇
  2007年   1059篇
  2006年   974篇
  2005年   880篇
  2004年   730篇
  2003年   609篇
  2002年   488篇
  2001年   453篇
  2000年   410篇
  1999年   362篇
  1998年   291篇
  1997年   159篇
  1996年   126篇
  1995年   107篇
  1994年   143篇
  1993年   124篇
  1992年   58篇
  1991年   70篇
  1990年   55篇
  1989年   40篇
  1988年   44篇
  1987年   12篇
  1986年   23篇
  1985年   32篇
  1984年   27篇
  1983年   20篇
  1982年   27篇
  1981年   10篇
  1980年   27篇
  1979年   6篇
  1978年   19篇
  1977年   21篇
  1877年   1篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
991.
We have performed new simulations of two different scenarios for the excitation and depletion of the primordial asteroid belt, assuming Jupiter and Saturn on initially circular orbits as predicted by the Nice Model of the evolution of the outer Solar System [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. First, we study the effects of sweeping secular resonances driven by the depletion of the solar nebula. We find that these sweeping secular resonances are incapable of giving sufficient dynamical excitation to the asteroids for nebula depletion timescales consistent with estimates for solar-type stars, and in addition cannot cause significant mass depletion in the asteroid belt or produce the observed radial mixing of different asteroid taxonomic types. Second, we study the effects of planetary embryos embedded in the primordial asteroid belt. These embedded planetary embryos, combined with the action of jovian and saturnian resonances, can lead to dynamical excitation and radial mixing comparable to the current asteroid belt. The mass depletion driven by embedded planetary embryos alone, even in the case of an eccentric Jupiter and Saturn, is roughly 10-20× less than necessary to explain the current mass of the main belt, and thus a secondary depletion event, such as that which occurs naturally in the Nice Model, is required. We discuss the implications of our new simulations for the dynamical and collisional evolution of the main belt.  相似文献   
992.
Pre-Cassini images of Saturn's small icy moon Enceladus provided the first indication that this satellite has undergone extensive resurfacing and tectonism. Data returned by the Cassini spacecraft have proven Enceladus to be one of the most geologically dynamic bodies in the Solar System. Given that the diameter of Enceladus is only about 500 km, this is a surprising discovery and has made Enceladus an object of much interest. Determining Enceladus' interior structure is key to understanding its current activity. Here we use the mean density of Enceladus (as determined by the Cassini mission to Saturn), Cassini observations of endogenic activity on Enceladus, and numerical simulations of Enceladus' thermal evolution to infer that this satellite is most likely a differentiated body with a large rock-metal core of radius about 150 to 170 km surrounded by a liquid water-ice shell. With a silicate mass fraction of 50% or more, long-term radiogenic heating alone might melt most of the ice in a homogeneous Enceladus after about 500 Myr assuming an initial accretion temperature of about 200 K, no subsolidus convection of the ice, and either a surface temperature higher than at present or a porous, insulating surface. Short-lived radioactivity, e.g., the decay of 26Al, would melt all of the ice and differentiate Enceladus within a few million years of accretion assuming formation of Enceladus at a propitious time prior to the decay of 26Al. Long-lived radioactivity facilitates tidal heating as a source of energy for differentiation by warming the ice in Enceladus so that tidal deformation can become effective. This could explain the difference between Enceladus and Mimas. Mimas, with only a small rock fraction, has experienced relatively little long-term radiogenic heating; it has remained cold and stiff and less susceptible to tidal heating despite its proximity to Saturn and larger eccentricity than Enceladus. It is shown that the shape of Enceladus is not that of a body in hydrostatic equilibrium at its present orbital location and rotation rate. The present shape could be an equilibrium shape corresponding to a time when Enceladus was closer to Saturn and spinning more rapidly, or more likely, to a time when Enceladus was spinning more rapidly at its present orbital location. A liquid water layer on Enceladus is a possible source for the plume in the south polar region assuming the survivability of such a layer to the present. These results could place Enceladus in a category similar to the large satellites of Jupiter, with the core having a rock-metal composition similar to Io, and with a deep overlying ice shell similar to Europa and Ganymede. Indeed, the moment of inertia factor of a differentiated Enceladus, C/MR2, could be as small as that of Ganymede, about 0.31.  相似文献   
993.
We describe a powerful signal processing method, the continuous wavelet transform, and use it to analyze radial structure in Cassini ISS images of Saturn's rings. Wavelet analysis locally separates signal components in frequency space, causing many structures to become evident that are difficult to observe with the naked eye. Density waves, generated at resonances with saturnian satellites orbiting outside (or within) the rings, are particularly amenable to such analysis. We identify a number of previously unobserved weak waves, and demonstrate the wavelet transform's ability to isolate multiple waves superimposed on top of one another. We also present two wave-like structures that we are unable to conclusively identify. In a multi-step semi-automated process, we recover four parameters from clearly observed weak spiral density waves: the local ring surface density, the local ring viscosity, the precise resonance location (useful for pointing images, and potentially for refining saturnian astrometry), and the wave amplitude (potentially providing new constraints upon the masses of the perturbing moons). Our derived surface densities have less scatter than previous measurements that were derived from stronger non-linear waves, and suggest a gentle linear increase in surface density from the inner to the mid-A Ring. We show that ring viscosity consistently increases from the Cassini Division outward to the Encke Gap. Meaningful upper limits on ring thickness can be placed on the Cassini Division (3.0 m at r∼118,800 km, 4.5 m at r∼120,700 km) and the inner A Ring (10-15 m for r<127,000 km).  相似文献   
994.
M.H. Moore  R.F. Ferrante  J.N. Stone 《Icarus》2007,190(1):260-273
Although water- and ammonia-ices have been observed or postulated as important components of the icy surfaces of planetary satellites in the outer Solar System, significant gaps exist in our knowledge of the spectra and behavior of such mixtures under astrophysical conditions. To that end, we have completed low-temperature spectroscopic studies (1-20 μm) of water-ammonia mixtures, with an emphasis on features in the near-IR, a region which is accessible to ground-based observations. The influences of composition, formation temperature, thermal- and radiation-processing, and phase (crystalline or amorphous) of the components were examined. Spectra of both pure NH3 and H2O-NH3 icy mixtures with ratios from 0.7 to 57 were measured at temperatures from 10 to 120 K. Conditions for the formation and thermal stability of the ammonia hemihydrate (2NH3⋅H2O) and the ammonia monohydrate (NH3⋅H2O) have been examined. Band positions of NH3 in different H2O-ices and major band positions of the hydrates were measured. We report spectral shifts that depend on concentration and temperature. The radiation-induced amorphization of the hemihydrate was observed and the radiation destruction of NH3 in H2O-ices was measured. Implications of these results for the formation, stability, and detection of ammonia on outer satellite surfaces are discussed.  相似文献   
995.
Three decades of slope streak activity on Mars   总被引:1,自引:0,他引:1  
Slope streaks are surficial mass movements that are abundant in the dust-covered regions of Mars. Targeting of slope streaks seen in Viking images with the Mars Orbiter Camera provides observations of slope streak dust activity over two to three decades. In all study areas, new and persisting dark slope streaks are observed. Slope streaks disappeared in one area, with persisting streaks nearby. New slope streaks are found to be systematically darker than persisting streaks, which indicates gradual fading. Far more slope streaks formed at the study sites than have faded from visibility. The rate of formation at the study sites was 0.03 new slope streaks per existing streak per Mars year. Bright slope streaks do not presently form in sudden events as dark slope streaks do. Instead, bright streaks might form from old dark slope streaks, perhaps transitioning through a partially faded stage.  相似文献   
996.
介绍了一种基于Delta-Sigma调制小数分频技术和YTO的宽带、高分辨率频率合成器的设计方案.对环路的数学模型进行了详细的分析,给出了计算机辅助设计结果.实测表明,方案可实现输出频率2-4 GHz,分辨率1Hz,并具有低相噪的特点.  相似文献   
997.
Mid-infrared limb spectra in the range 600-1400 cm−1 taken with the Composite InfraRed Spectrometer (CIRS) on-board the Cassini spacecraft were used to determine vertical profiles of HCN, HC3N, C2H2, and temperature in Titan's atmosphere. Both high (0.5 cm−1) and low (13.5 cm−1) spectral resolution data were used. The 0.5 cm−1 data gave profiles at four latitudes and the 13.5 cm−1 data gave almost complete latitudinal coverage of the atmosphere. Both datasets were found to be consistent with each other. High temperatures in the upper stratosphere and mesosphere were observed at Titan's northern winter pole and were attributed to adiabatic heating in the subsiding branch of a meridional circulation cell. On the other hand, the lower stratosphere was much colder in the north than at the equator, which can be explained by the lack of solar radiation and increased IR emission from volatile enriched air. HC3N had a vertical profile consistent with previous ground based observations at southern and equatorial latitudes, but was massively enriched near the north pole. This can also be explained in terms of subsidence at the winter pole. A boundary observed at 60° N between enriched and un-enriched air is consistent with a confining polar vortex at 60° N and HC3N's short lifetime. In the far north, layers were observed in the HC3N profile that were reminiscent of haze layers observed by Cassini's imaging cameras. HCN was also enriched over the north pole, which gives further evidence for subsidence. However, the atmospheric cross section obtained from 13.5 cm−1 data indicated a HCN enriched layer at 200-250 km, extending into the southern hemisphere. This could be interpreted as advection of polar enriched air towards the south by a meridional circulation cell. This is observed for HCN but not for HC3N due to HCN's longer photochemical lifetime. C2H2 appears to have a uniform abundance with altitude and is not significantly enriched in the north. This is consistent with observations from previous CIRS analysis that show increased abundances of nitriles and hydrocarbons but not C2H2 towards the north pole.  相似文献   
998.
999.
We present a set of rotational lightcurve measurements of the small main belt Asteroid 3169 Ostro. Our observations reveal an unambiguous, double-peaked rotational lightcurve with a peak-to-peak variation up to 1.2±0.05 mag and a synodic period of 6.509±0.001 h. From the large flux variation and the overall shape of the lightcurves, we suggest that 3169 Ostro could be a tightly bound binary or a contact binary, similar to the Trojan Asteroid 624 Hektor. A shape model of this system is proposed on the assumption that 3169 Ostro is a Roche binary described by a pair of homogeneous elongated bodies, with a size ratio of 0.87, in hydrostatic equilibrium and in circular synchronous motion around each other. The direction of the spin axis is determined modulo 180° by its J2000 ecliptic coordinates λ0=50±10°, β0=±54±5°. The binary interpretation and the pole solution adequately fit the earlier photometric observations made in 1986 and 1988. However, additional supporting lightcurves are highly desirable especially in the next mutual events occurrence of 2008 and 2009 in order to remove the pole ambiguity and to confirm unambiguously the binary nature of 3169 Ostro.  相似文献   
1000.
All the confirmed Soft Gamma-ray Repeaters have been observed with the EPIC instrument on the XMM–Newton satellite. We review the results obtained in these observations, providing the most accurate spectra on the persistent X-ray emission in the 1–10 keV range for these objects, and discuss them in the context of the magnetar interpretation.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号